
2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14,2003

Parallel signal processing and system simulation using a c e
John E. Dorband

NASA Goddard Space Flight Center, Greenbelt, MD 20771
John.E.Dorband@nasa.gov

Maurice F. Aburdene
Department of Elecnical Engineering, Bucknell Universiy, Lewisburg, Pa I7837

aburdene@bucknell.edu

Abstract: Recently, networked and cluster computation have become very popular for both signal
processing and system simulation. A new language is ideally suited for parallel signal processing
applications and system simulation since it allows the programmer to explicitly express the
computations that can be performed concurrently. In addition, the new C based parallel language
(ace C) for architecture-adaptive programming allows programmers to implement algorithms and
system simulation applications on parallel architectures by providing them with the assurance that
future parallel architectures will be able to run their applications with a minimum of modification.
In this paper, we will focus on some hndamental features of ace C and present a signal
processing application (FFT).

1. Introduction

Parallel and networked computer programming
techniques have become popular and important
computational tools for system simulation and signal
processing[11. The essential elements of parallel
programming are concurrent computation (threads)
and communications (messages). ace is based on
the concept of structured parallel execution [2-31..
First the programmer designs a virtual architecture
that reflects the spatial organization of an algorithm.
An example is shown in Fig. 1. A virtual architecture
may consist of groups or bundles of threads of
execution. Second the application program reflects
the temporal organization of the algorithm. The code
defines what each thread performs, which together
with the virtual architecture, defines the algorithm’s
execution. ace allows the programmer to both
envision the most logical architecture for the
application and then implement the algorithm using
that architecture.. The ace language allows the
programmer to explicitly express that which can be
performed concurrently. The purpose of ace is to
facilitate the development of parallel programs by
allowing programmers to explicitly describe the
parallelism of an algorithm.

El *-

A r d s L Q n

Fig. 1. Sample Virtual Architecuture

1.1 a c e micro-threads

One of the essential elements of concurrent
computations is micro-threads. The following ace
program shows an example of micro-threads.

threads A[1001;

threads B[IO];
A int av;

B.(...
A.(int bv,cv;

if (av==bv) cv=O ;

1
1

Any C code is valid, except ‘goto’s.

The difference between ace and C is that while
C has only one thread of execution, ace, may have
many threads of execution. Each thread may be
referenced by name and index. Parallelism in ace is
expressed by first defining a set of concurrently
executable threads. A group of parallel threads can be
viewed as a bundle of executing threads, a bundle of
processes, or an array of processors. These three
views will be treated synonymously. In ace, a bundle
of threads is defined with the ‘threads’ statement. The
statement “threads A[lOO]” only declares the intent
of the programmer to use 100 concurrent threads of
executions named ‘A’ at some later point in the

2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14,2003

code. The statement A int av allocates an integer
‘av’ for each of the 100 threads of bundle ‘A’.

1.2 a c e micro-messages

The second essential element of concurrent
programming is micro-messages. Here is an example
program showing communication.

threads A[1001;

threads B[1001;

A,{ int av,cv; B int bv;

av = A[$$i+l].cv ; /* get operation */

B[$$i/lO].bv += av ; /* put operation */

1
/* Note: $$i is a threads unique ID */

1.3 Virtual Architecture

One of the major advantages of ace for signal
processing is that it allows the programmer to create
a virtual architecture for the algorithm. Fig 2-6 show
various examples of virtual architectures and
communications along with the a c e code.

threads X[If ;
threads { Z[21[2] Y[3][3] ;

U L

Fig. 2. Virtual Architecture

threads A121 [2] ;
A. { int a=$%; int b=3; int c;

t
c=a*b;

Fig. 3. No Communications

threads A[5 I2 J[5 1 23 ;
a = .A[O][-l].c ; /* North */
a = A[O][l].c ; P South *I

Fig. 4.2-D Relative Communications

threads A[513]{511J ;
a = A[O][S%ix[O]-l f.c : I* Nonh *I
a = A[O][%$is[O] +I].c ; /* South *!
a += A[$Six[I]-llfO].c : /* West */

Fig. 5. Absolute Communications

Aggregate Operations (f. -. &, 1, A. >?, <?)

thrcnds X[I J : threads Z[1][2]) Y[3][3] ;
Y.(int a; X int b; X.h+=a; f

Fig. 6. Global Aggregate

threads NODE[1 0001
threads { CornerE3)] CELL[2000] ;

Fig. 7. Finite Element Example

CELL
@ Corner

NUDE

2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12- 14,2003

2. FFT Example

The fast Fourier transform, FFT, is widely used in
science and engineering and is easily implemented on
parallel architectures [4-51. Gupta and Kumar [6]
presented the scalability analysis of an FFT algorithm
for both mesh and hypercube architectures.

The ace program shown in Appendix A
performs a NxN 2-D FFT and inverse FFT on test
data. This program performs N 1-D FFTs in parallel
(partialFFT) in one dimension, transposes
(Transpose) the transformed data, performs a second
set of 1-D FFTs, and performs another transposes of
the resulting transformed data. The I-D FFT results
in shuffled data and is unshuffled (UnShuffle)
immediately after the I-D FFT is performed.

of threads to a N*N/2 I-D bundle of threads, thus the
2-D FFT was actually performed on a 1-D
architecture.

The data was moved h m the NxN 2-D bundle

3. Summary

This paper presented the fundamental concepts of a
new C based parallel programming paradigm, ace C.
The intent of ace is to allow a programmer to easily
express the parallelism of an algorithm, allowing the
compiler to more easily map the parallelism of that
algorithm on to various parallel architectures. The
ease of mapping facilitates the porting of programs
and development /runtime environments to different
architectures, promoting the development of new
architectures. In addition, a parallel implementation
of a 2-D FFT was presented.

4. References
[I1G.R Andrews, Fowrdntionr of multithreaded, parallel, and
distributedpmgramming, Addison-Wesley, 2000.
[2] J.E. Dorband and M.F. Aburdene, “Architecture-adaptive
computing environment: a tool for teaching parallel
programming”, poceed inm-Frontiers in Education Conference,

[3] J.E. Dorband, “ace C Reference”, NASA Goddard Space
Flight Center, Greenbelt, IvlD.
[4] Michael .J. Quinn, Parallel Computing: Theoty and Practice,
McGraw-Hill, Inc., 1994.
[5] Harold S. Stone, High-Pe$onnance Computet Architecture,
Addison-Wesley, Mass., 1987.
[6] A. Gupta and V. .Kurnar, “The scalability of FFT on parallel
computers”, IEEE Transactions. on Parallel and Distributed
Systems, V. 4, no. 8, August 1993, pp. 922-932.

Vol. 3, pp. S2F 7-S2F112,2002.

5. Acknowledgments
This research was funded in part by NASA grant NAGS-
10821.

Appendix A: Parallel FFT Program

include <stdio. aHr>
include <math.aHr>

define real

define twoPI

define PI

define size 512
define radius 3
define nproc2 (size*size)
define nproc (nproc2>>1)

double

((double) 6.28318530717959)

(twoPI/Z)

struct complex { real rr,ii ; } ;
typedef struct complex complex ;

generic void ComplexAdd (
complex *C,
complex *A,
complex *B) {

C->rr = A->rr f B->rr ;
C->ii = A->ii f B->ii ;
1

generic void Complexsub (
complex *C,
complex *A,
complex *B) {

C->rr = A->rr - B->rr ;
C->ii = A->ii - B->ii ;
1

generic void ComplexMult (
complex *C,
complex *A,
complex *B 1 I

real D;
= A->rr*B->rr - A->ii*B->ii ; D

C->ii = A->rr*B->ii + A->ii*B->rr ;
C->rr = D ;
I

generic complex Init-FFT
(int nxproc) {
real i; complex WS1 ;

2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12- 14,2003

/ * initialize fft coefficients * /

i = $$i%(nxproc>>l) ;
WSl.rr = cos((twoPI*i)/nxproc) ;
WSl.ii = sin((twoPI*i)/nxproc) ;

return WS1 ;
1

generic(WorkSpace[])void partialFFT
(complex A[2],
complex *W1,
int nxproc 1 {

complex Al,A2 ;
complex Zl,Z2,C ;
int i , iproc, n ;

iproc = $Si ;
n = nxproc>>2 ; / * nxproc/4 * /
A1 = A[O] ;
A2 = A[1] ;

ComplexAdd (&C, &A1 , &A2 ;
ComplexSub (&A2 , &Al, &A2) ;
ComplexMult (&A2, &A2 , W1) ;
A l = C ;
ComplexMult (Wl,Wl,Wl) ;

for (i=n ; i>O ; i>>=l) {

if ((iproc&i) !=O) 1
Wl->rr = -W1->rr ;
w1->ii = -Wl->ii ; 1

Z1 = .WorkSpac’e[il .A1 ;
22 = .Workspace[-i] .A2 ;
if ((iproc&i)==O) A2=Z1 ;
else A1=Z2 ;

ComplexAdd (&C, &All &A2) ;
ComplexSub (&A2, &A1 , &A2) ;
ComplexMult .(&A2, &A2,W1) ;
A l = C ;
ComplexMult (Wl,Wl,Wl] ;

Z1 = .Workspace[i] .A1 ;
22 = .Workspace[-i] .A2 ;
if ((iproc&i)==O) A2=Z1 ;
else A1=Z2 ;

A[01 = A1 ;
Ail] = A2 ;

1

generic(WorkSpace[]) void UnShuffle
(complex A[2], int nxproc) {

complex A1,AZ ;
complex Zl,Z2 ;
int i, j, iproc, n ;

iproc = $Si ;
n = nxproc>>2 ; / * nxproc/4 * /
A1 = A[O] ;
A2 = A[1] ;

for(i=n, j=2; i>j; i>>=l, j<<=l) {

Z1 = .Workspace[jl .A1 ;
22 = . Workspace [-j 3 .A2 ;
if ((iproc&j)==O) A2=Z1 ;
else Al=Z2 ;

Z1 = .Workspace[i] .A1 ;
22 = .Workspace[-i] .A2 ;
if ((iproc&i)==O) A2=Z1 ;
else Al=Z2 ;

Z1 = .Workspace[jl .A1 ;
22 = .Workspace[-jl.A2 ;
if ((iproc&j)==O) A2=Z1 ;
else A1=Z2 ;

Z1 = .Workspace[1l.Al ;
22 = .Workspace[-11 .A2 ;
if ((iproc&l)==O) A2=Z1 ;
else Al=Z2 ;

A[O] = A1 ;
A[1] = A2 ;

I

generic(WorkSpace[]) void Transpose
(complex A[2], int nxproc) {
complex Al,A2 ;
complex Z1,22 ;
int i, j , iproc, no, nl ;

iproc = $Si ;
no = nxproc>>l ; /* nxproc/2 * /
nl = nxproc>>l ; /* nxproc/2 * /
A1 = A[O] ;
A2 = A[11 ;

for(i=nl, j=1; j<nO; i<<=l, j<<=l) {

Z1 = .Workspace[j] .A1 ;

2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14,2003

22 = .Workspace[-j].A2 ;
if ((iproc&j)==O) A2=21 ;
else A1=22 ;

21 = .Workspace[i].Al ;
22 = .Workspace[-i] .A2 ;
if ((iproc&i)==O) A2=Z1 ;
else A1=22 ;

21 = .WorkSpace[j].Al ;
22 = .Workspace[-j].A2 ;
if ((iproc&j)==O) A2=21 ;
else A1=22 ;

Z1 = .Workspace[i] .A1 ;
22 = .Workspace[-il .A2 ;
if ((iproc&i)==O) A2=21 ;
else A1=22 ;
A[O] = A1 ;
A[1] = A2 ;

generic (Workspace [I) void FFT (
complex A[2] ,
complex *WS,
int nxproc) {

complex W ;

/ * fft coefficients * /
w = *ws ;

/ * X dimension fft * /
partialFFT(A, &W, nxproc) ;
/ * X dimension unshuffle * /
UnShuffle (A, nxproc) ;
/ * Transpose data * /
Transpose (A, nxproc) ;

/ * fft coefficients * /
w = *ws ;

/ * X dimension fft * /
partialFFT(A, &W, nxproc) ;
/ * X dimension unshuffle * /
UnShuffle (A, nxproc) ;
/ * Transpose data * /
Transpose (A, nxproc) ;

1

generic (Workspace [I) void invFFT (
complex A[2] ,
complex *WS,

int nxproc) {
complex W ; int Size ;

/ * fft coefficients * /
W.rr = WS->rr ;
/ * complex conjugate * /
W.ii = -WS->ii ;

/ * X dimension fft * /
partialFFT(A, &W, nxproc) ;
/ * X dimension unshuffle * /
UnShuffle (A, nxproc) ;
/ * Transpose data * /
Transpose (A, nxproc) ;

/ * fft coefficients * /
W.rr = WS->rr ;
/ * complex conjugate * /
W.ii = -WS->ii ;

/ * X dimension fft * /
partialFFT(A, &W, nxproc) ;
/ * X dimension unshuffle * /
UnShuffle (A, nxproc 1 ;
/ * Transpose data * /
Transpose (A, nxproc) ;

/ * normalize result * /
Size = (nxproc*nxproc) ;
A[O] .rr /= (Size) ;
A[O].ii /= (Size) ;
A[l].rr /= (Size) ;
A[1] .ii /= (Size) ;

1

threads WorkSet [nproc] ;
threads Frame [size] [size] ;

int main (int argc, char **argv) {

WorkSet. {
complex A[2l,WS ;

/ * initialize test data set * /

Frame. {
int KK, LL;
real RIMAGE ;

KK = $$ix[Ol-(size>>l) ;
LL = $$ix[ll-(size>>l) ;

RIMn.GE = 0;
if (
KK*KK+LL*LL < radius*radius
) RIMAGE = 1 ;

2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14,2003

WorkSet. {
int i=S$i;
A[O].rr =
Frame [i/(size>>l)]

A[O].ii = 0.0 ;
A[1] .rr =
Frame [i/(size>>l)]

[i% (size>>l)] .RIMAGE ;

[(i% (size>>l)) + (size>>l)]
.RIMAGE ;

A[l].ii = 0.0 ;
I

1

Frame. {
real RIMAGE ;

Workset.{ int i=$$i;
Frame [i/ (size>>l)]

[i% (size>>l)] . RIMAGE
= sqrt(A[O] .rr*A[O] .rr

+ A[Ol.ii*A[Ol.ii) ;
Frame [i/(size>>l) 3

[(i% (size>>l))+(size>>l) I
. RIMAGE

= sqrt(A[1] .rr*A[lI .rr +
A[l].ii*A[l].ii) ;

I

printf ("%c%lOg",
(($$ix[Ol)?' ':I\n') ,
RIMAGE) ;

if (!$Si) printf (l'\n'r);
I

/ * initialize fft coefficients * /

WS = Init-FFT (Frame. ($$Nx[Ol) 1 ;

/ * perform FFT * /

FFT (A, &WS, Frame.($$Nx[O])) ;

Frame. {
real RIMAGE ;

Workset.{ int i=$$i;
Frame [i/ (size>>l)]

[i% (size>>l) 3 .RIMAGE
= sqrt (A[03 .rr*A[O] .rr

+ A[O].ii*A[O].ii) ;
Frame [i/ (size>>l) 3

[(i% (size>>l))+(size>>l) 3
. RIMAGE
= sqrt (A[1] .rr*A[l] .rr
+ A[l].ii*A[l].ii) ;

print f ('I % c% 1 0 g " ,
(($$ix[O])?' ':'\nl) ,
RIMAGE) ;

if (!$Si) printf ("\n") ;
}

/ * perform inverse FFT * /

invFFT (A, &WS, Frame.($$Nx[O])) ;

/ * clean up result * /

if (A[O].rr < le-13) A[O].rr=O.O ;
if (A[O].ii < le-13) A[O].ii=O.O ;
if (A[l].rr < le-13) A[l].rr=O.O ;
if (A[l].ii < le-13) A[ll.ii=O.O ;

Frame. {
real RIMAGE ;

Workset.{ int i=$$i;
Frame [i/ (size>>l) 3

[1% (size>>l) 3 .RIMAGE
= sqrt(A[0] .rr*A[O] .rr

+ A[O] .ii*A[O] .ii) ;
Frame [i/ (size>>l) 3

[(i%(size>>l))+(size>>l)]
. RIMAGE
= sqrt (A[1] .rr*A[l] .rr
+ A[1] .ii*A[l] .ii) ;

1

printf ("%c%lOg",
(($$ix[Ol)?' l:l\n') ,
RIMAGE) ;

if (!$Si) printf ("\n") ;
I

return 0;

NASA's
GodQrdSpace
FliM Center

Name

John Dorband .

William Campbell

Richard Rood

Route Sheet
~-

Date" - Pur- Initials"
pose' In out

Code

935

ORIGINATOR

John Dorband
TYPED BY

Nancy Dixon

935

CODE PHONE. NUMBER
935.0 6-94 19

CODE PHONE NUMBER
935.0 6-3898

930

QUALITY CHECK (r c c r c q ; please (CYICW and initlrl)

BR: x DIV DIR

230

MAL LOG

BR Log # DIV Log # DIR Log #

935

SUBJECT

Request for approval for publication release: Parallel signal processing and system simulation using
ace

234.0

DUEDATE

0211 9/03

'PURPOSE LEGEND "INITIALs/DATE: Ensure that all initials and inlout dates are completed for all l ies GSFC 11-20 (999)
1. Forinfomation
2. For reviewIapprovaVconwrence
3. Fornecessaryadion
4. For signalwe

